Subdifferentiability

in Convex and Stochastic Optimization Applied to Renewable Power Systems

PhD thesis supervised by Michel De Lara

Adrien Le Franc

December 8th, 2021

École des Ponts ParisTech

1. EMSx: a numerical benchmark for energy management systems

2. Parametric multistage stochastic optimization for day-ahead power scheduling

3. Perspectives for numerical methods in generalized convexity

1. EMSx: a numerical benchmark for energy management systems

2. Parametric multistage stochastic optimization for day-ahead power scheduling

3. Perspectives for numerical methods in generalized convexity

A PV-battery microgrid

• Question

How to evaluate an Energy Management System (EMS) designed for operating a microgrid with uncertain load and production at least expected cost?

• Our contribution

We introduce EMSx, a **microgrid controller benchmark** to compare (deterministic and stochastic) EMS techniques on an **open** and **diversified** testbed

EMSx: a numerical benchmark for energy management systems The EMSx dataset

The EMSx mathematical framework: microgrid model The EMSx mathematical framework: controller assessment The EMSx software Numerical examples of controllers

Examples of daily scenarios from EMSx

Figure 1: Examples of daily photovoltaic profiles

Figure 2: Examples of daily load profiles

Over 1 year of historical observations and forecasts collected by Schneider Electric on 70 industrial sites

Stochasticity of the net demand across sites

Figure 3: RMSE of the net demand forecasts for each of the 70 sites

1. EMSx: a numerical benchmark for energy management systems The EMSx dataset

The EMSx mathematical framework: microgrid model

The EMSx mathematical framework: controller assessment

The EMSx software

Numerical examples of controllers

We make decisions at time steps $t \in \{0, 1, \dots, T\}$ over one week ($\Delta_t = 15 \text{ min}$, T = 672)

- $\mathbf{x}_t \in [0,1]$ state of charge of the battery
- $u_t \in [\underline{u}, \overline{u}]$ energy charged $(u_t \ge 0)$ or discharged $(u_t \le 0)$ over [t, t+1]
- $w_{t+1} = (g_{t+1}, d_{t+1})$ generation and demand historical data over [t, t+1]
- $\hat{w}_{t,t+k} = (\hat{g}_{t,t+k}, \hat{d}_{t,t+k})$, $k \in \{1, \dots, 96\}$ generation and demand historical forecast at time tover [t + k - 1, t + k]

Our microgrid management model

• state of charge ruled by the dynamics

$$x_{t+1} = f(x_t, u_t) = x_t + \frac{\rho_c}{c}u_t^+ - \frac{1}{\rho_d c}u_t^-$$

• controls restricted to the admissibility set

$$\mathcal{U}(x_t) = \{u_t \in \mathbb{R} \mid \underline{u} \le u_t \le \overline{u} \text{ and } 0 \le f(x_t, u_t) \le 1\}$$

• energy exchanges induce a **cost**

$$L_t(u_t, w_{t+1}) = p_t^{\text{buy}} \cdot (d_{t+1} - g_{t+1} + u_t)^+ - p_t^{\text{sell}} \cdot (d_{t+1} - g_{t+1} + u_t)^-$$

EMSx: a numerical benchmark for energy management systems The EMSx dataset The EMSx mathematical framework: microgrid model The EMSx mathematical framework: controller assessment The EMSx software Numerical examples of controllers

Online information for decision making

 A partial chronicle is a sequence h = (h₀,..., h_{T-1}) of vectors where for t ∈ {0,..., T − 1}

$$h_t = \begin{pmatrix} w_t, w_{t-1}, \dots, w_{t-95} \\ \hat{w}_{t,t+1}, \dots, \hat{w}_{t,t+96} \end{pmatrix} \in \mathbb{H} = \mathbb{R}^{2 \times 96} \times \mathbb{R}^{2 \times 96}$$

 A controller is a sequence φ = (φ₀,..., φ_{T-1}) of mappings where for t ∈ {0,..., T − 1}

$$egin{aligned} \phi_t &: [0,1] imes \mathbb{H} o \mathbb{R} \ & (x_t,h_t) \mapsto \phi_t(x_t,h_t) \in \mathcal{U}(x_t) \end{aligned}$$

For each site $i \in I = \{1, \dots, 70\}$

A controller φⁱ applied to a partial chronicle h ∈ ℍ^T yields a management cost

$$\begin{aligned} H^{i}(\phi^{i},h) &= \sum_{t=0}^{T-1} L^{i}_{t}(u_{t},w_{t+1}) \\ x_{0} &= 0 \\ x_{t+1} &= f^{i}(x_{t},u_{t}) \\ \underbrace{u_{t} &= \phi^{i}_{t}(x_{t},h_{t})}_{\text{nonanticipativity}} \end{aligned}$$

 If we allow anticipative decisions we obtain a lower bound for management costs <u>J</u>ⁱ(h) ≤ Jⁱ(φⁱ, h) We have a pool of simulation chronicles $\mathscr{S}^i \subset \mathbb{H}^T$

• We measure gains w.r.t. a dummy controller $\phi^{d} = 0$ (which does not use the battery)

$$G^i(\phi^i) = rac{1}{|\mathscr{S}^i|}\sum_{h\in \mathscr{S}^i}J^i(\phi^{\mathrm{d}},h) - J^i(\phi^i,h)$$

• We define the anticipative gain

$$\overline{G}^{i} = \frac{1}{|\mathscr{S}^{i}|} \sum_{h \in \mathscr{S}^{i}} J^{i}(\phi^{\mathrm{d}}, h) - \underline{J}^{i}(h)$$

• We obtain an upper bound for gains $\overline{{\sf G}}^i \geq {\sf G}^i(\phi^i)$

• We define the **normalized score** of a control technique $\{\phi^i\}_{i\in I}$

$$\mathcal{G}(\left\{\phi^{i}\right\}_{i\in I}) = \frac{1}{|I|} \sum_{i\in I} \frac{G^{i}(\phi^{i})}{\overline{G}^{i}}$$

• A performing control technique gives

$$\underbrace{0 \leq}_{\text{f better that } \phi^{\mathsf{d}}} \mathcal{G}(\{\phi^i\}_{i \in I}) \quad \underbrace{\leq 1}_{\text{always}}$$

1. EMSx: a numerical benchmark for energy management systems

The EMSx dataset

The EMSx mathematical framework: microgrid model

The EMSx mathematical framework: controller assessment

The EMSx software

Numerical examples of controllers

1	struct Information			
2	t::Int64			
3	soc::Float64			
4	<pre>pv::Array{Float64,1}</pre>			
5	<pre>forecast_pv::Array{Float64,1}</pre>			
6	load::Array{Float64,1}			
7	<pre>forecast_load::Array{Float64,1}</pre>			
8	price::Price			
9	battery::Battery			
10	<pre>site_id::String</pre>			
11	end			

The EMSx.jl built-in type Information gathers all the information available to the controller to make a decision

A Julia package: EMSx.jl

```
using EMSx
1
2
3
    mutable struct DummyController <: EMSx.AbstractController end</pre>
4
    EMSx.compute_control(controller::DummyController,
5
        information::EMSx.Information) = 0.
6
7
    const controller = DummvController()
8
9
    EMSx.simulate_sites(controller,
10
         "home/xxx/path_to_save_folder",
11
12
         "home/xxx/path to price".
         "home/xxx/path_to_metadata",
13
         "home/xxx/path_to_simulation_data")
14
```

Example of the implementation and simulation of a dummy controller with the EMSx.jl package

Outline of the section

1. EMSx: a numerical benchmark for energy management systems

- The EMSx dataset
- The EMSx mathematical framework: microgrid model
- The EMSx mathematical framework: controller assessment
- The EMSx software
- Numerical examples of controllers

Standard controller design techniques

Look-ahead techniques: MPC, OLFC

Cost-to-go techniques: SDP, SDP-AR(k)

Normalized score per design technique

	Normalized score	Offline time	Online time
	Normalized score		(seconds)
MPC	0.487	0.00	$9.82 \ 10^{-4}$
OLFC-10	0.506	0.00	$1.14 \ 10^{-2}$
OLFC-50	0.513	0.00	$8.62 \ 10^{-2}$
OLFC-100	0.510	0.00	$1.87 \ 10^{-1}$
SDP	0.691	2.67	$3.09 \ 10^{-4}$
SDP-AR(1)	0.794	38.1	$4.44 \ 10^{-4}$
SDP-AR(2)	0.795	468	$5.55 \ 10^{-4}$
Upper bound	1.0	-	-

Detailed gain over the 70 sites

1. EMSx: a numerical benchmark for energy management systems

2. Parametric multistage stochastic optimization for day-ahead power scheduling

3. Perspectives for numerical methods in generalized convexity

A typical power scheduling example

- We operate a solar plant over **one day** with discrete time steps $t \in \{0, 1, \dots, T\}$ 0 T
- For every operating day
 - In the day-ahead stage, we must supply a power production profile $p \in \mathbb{R}^T$
 - In the intraday stage, we manage the power plant and deliver a power profile p̃ ∈ ℝ^T

Engaged power vs delivered power

The delivered power \tilde{p} induces gains and differences between p and \tilde{p} induce penalties

26

• Question

How can we optimize **day-ahead and intraday decisions** for operating a solar plant with **uncertain generated power** at **least expected cost**?

• Our contribution

We introduce parametric multistage stochastic optimization problems for day-ahead power scheduling and study differentiability properties of parametric value functions

2. Parametric multistage stochastic optimization for day-ahead power scheduling

Parametric multistage stochastic optimization

Differentiability of smooth parametric value functions

Lower smooth approximations

Lower polyhedral approximations

Numerical application

Our standard formulation

We consider a **multistage stochastic optimization problem** parametrized by $p = (p_0, ..., p_T) \in \mathbb{R}^{n_p \times (T+1)}$ formulated as

$$\Phi(\boldsymbol{p}) = \inf_{\mathbf{U}_{\boldsymbol{0}},\dots,\mathbf{U}_{T-1}} \mathbb{E}\left[\sum_{t=0}^{T-1} L_t(\mathbf{X}_t, \mathbf{U}_t, \mathbf{W}_{t+1}, \boldsymbol{p}_t) + \mathcal{K}(\mathbf{X}_T, \boldsymbol{p}_T)\right]$$
$$\mathbf{X}_0 = x_0$$
$$\mathbf{X}_{t+1} = f_t(\mathbf{X}_t, \mathbf{U}_t, \mathbf{W}_{t+1}), \quad \forall t \in \{0, \dots, T-1\}$$
$$\mathbf{U}_t \in \mathcal{U}_t(\mathbf{X}_t, \boldsymbol{p}_t), \quad \forall t \in \{0, \dots, T-1\}$$
$$\sigma(\mathbf{U}_t) \subseteq \sigma(\mathbf{W}_1, \dots, \mathbf{W}_t), \quad \forall t \in \{0, \dots, T-1\}$$

where $\mathbf{X}_t: \Omega \to \mathbb{R}^{n_x}$, $\mathbf{U}_t: \Omega \to \mathbb{R}^{n_u}$, $\mathbf{W}_t: \Omega \to \mathbb{R}^{n_w}$

Assumption (discrete white noise)

The sequence $\{\mathbf{W}_t\}_{t \in \{1,...,T\}}$ is stagewise independent, and each noise variable \mathbf{W}_t has a finite support

For $t \in \{0, ..., T\}$ and $x \in \mathbb{R}^{n_x}$ we define the **parametric value functions**

$$V_T(x, \mathbf{p}) = K(x, \mathbf{p})$$
$$V_t(x, \mathbf{p}) = \inf_{u \in \mathcal{U}_t(x, \mathbf{p}_t)} \mathbb{E} \Big[L_t(x, u, \mathbf{W}_{t+1}, \mathbf{p}_t) + V_{t+1} \big(f_t(x, u, \mathbf{W}_{t+1}), \mathbf{p} \big) \Big]$$

Under the (discrete) white noise assumption $\Phi(\mathbf{p}) = V_0(x_0, \mathbf{p})$

Assumption (convex multistage problem)

- the cost functions {L_t}_{t∈{0,...,T-1}} are jointly convex and lsc w.r.t. (x_t, u_t, p_t), and are proper, and the final cost K is convex, proper, lsc
- 2. the dynamics $\{f_t\}_{t \in \{0,...,T-1\}}$ are affine w.r.t. (x_t, u_t)
- the set-valued mappings {U_t}_{t∈{0,...,T-1}} are closed, convex, have nonempty domains and compact ranges
- 4. the problem satisfies a **relatively complete recourse-like** *assumption*

Proposition

Under the **discrete white noise** assumption and the **convex multistage problem** assumption, the parametric value functions $\{V_t\}_{t \in \{0,...,T\}}$ are **convex, proper, lsc** w.r.t. (x, p)

2. Parametric multistage stochastic optimization for day-ahead power scheduling

Parametric multistage stochastic optimization

Differentiability of smooth parametric value functions

Lower smooth approximations

Lower polyhedral approximations

Numerical application

Assumption (smoothness)

- the cost functions {L_t}_{t∈{0,...,T-1}} and K are differentiable w.r.t. p_t
- for all t ∈ {0,..., T − 1}, the set-valued mapping U_t takes the same set value for all p_t ∈ ℝ^{n_p}; in that case, we use the notation U_t(x) instead of U_t(x, p_t)

Theorem (Le Franc [2021])

Under the **discrete white noise** assumption, the **convex multistage problem** assumption, and the **smoothness** assumption, the value functions $\{V_t\}_{t \in \{0,...,T\}}$ are **differentiable w.r.t.** *p*, and their gradients may be computed by backward induction, with

$$abla_p V_T(x, \mathbf{p}) =
abla_p K(x, \mathbf{p_T}), \ \forall (x, \mathbf{p}) \in \operatorname{dom}(V_T)$$

and at stage $t \in \{0, ..., T-1\}$, for $(x, p) \in dom(V_t)$, the solution set $U_t^*(x, p_t)$ is nonempty, and for any $u^* \in U_t^*(x, p_t)$,

$$\nabla_{\boldsymbol{p}} V_t(\boldsymbol{x}, \boldsymbol{p}) = \mathbb{E} \Big[\nabla_{\boldsymbol{p}} L_t(\boldsymbol{x}, \boldsymbol{u}^*, \boldsymbol{W}_{t+1}, \boldsymbol{p}_t) + \nabla_{\boldsymbol{p}} V_{t+1} \big(f_t(\boldsymbol{x}, \boldsymbol{u}^*, \boldsymbol{W}_{t+1}), \boldsymbol{p} \big) \Big]$$

2. Parametric multistage stochastic optimization for day-ahead power scheduling

Parametric multistage stochastic optimization

Differentiability of smooth parametric value functions

Lower smooth approximations

Lower polyhedral approximations

Numerical application
We consider a **parameter set** $\mathcal{P} \subseteq \mathbb{R}^{n_p \times (T+1)}$

Assumption (parameter set)

- 1. the parameter set \mathcal{P} is **nonempty, convex and compact**
- 2. for all $t \in \{0, ..., T-1\}$, the domain of the set-valued mapping U_t is such that dom $(U_t) \subseteq \mathbb{R}^{n_x} \times \mathcal{P}_t$

where
$$\mathcal{P}_t = \operatorname{proj}_t(\mathcal{P}) \subseteq \mathbb{R}^{n_p}$$
, $\forall t \in \{0, \ldots, T\}$

Given values $(x, u, w) \in \mathbb{R}^{n_x} \times \mathbb{R}^{n_u} \times \mathbb{R}^{n_w}$ and a **regularization parameter** $\mu \in \mathbb{R}^*_+$, we introduce

$$\begin{split} L_t^{\mu}(x, u, w, \boldsymbol{p}_t) &= \inf_{\boldsymbol{p}_t' \in \mathbb{R}^{n_p}} \left(L_t(x, u, w, \boldsymbol{p}_t') + \delta_{\operatorname{gr}(\mathcal{U}_t)}(x, u, \boldsymbol{p}_t') + \delta_{\mathcal{P}_t}(\boldsymbol{p}_t') \right. \\ &\left. + \frac{1}{2\mu} ||\boldsymbol{p}_t - \boldsymbol{p}_t'||_2^2 \right), \ \forall t \in \{0, \dots, T-1\}, \ \forall \boldsymbol{p}_t \in \mathbb{R}^{n_p} \end{split}$$

$$\mathcal{K}^{\mu}(x,\boldsymbol{p_{T}}) = \inf_{p_{T}^{\prime} \in \mathbb{R}^{n_{p}}} \left(\mathcal{K}(x,p_{T}^{\prime}) + \delta_{\mathcal{P}_{T}}(p_{T}^{\prime}) + \frac{1}{2\mu} ||\boldsymbol{p_{T}} - p_{T}^{\prime}||_{2}^{2} \right), \quad \forall \boldsymbol{p_{T}} \in \mathbb{R}^{n_{p}}$$

$$\begin{split} & \bigvee_{T}^{\mu}(x, \boldsymbol{p}) = \mathcal{K}^{\mu}(x, \boldsymbol{p}_{T}) , \ \forall (x, \boldsymbol{p}) \in \mathbb{R}^{n_{x}} \times \mathbb{R}^{n_{p} \times (T+1)} \\ & \bigvee_{t}^{\mu}(x, \boldsymbol{p}) = \inf_{u \in \mathrm{range}(\mathcal{U}_{t})} \mathbb{E} \Big[L_{t}^{\mu}(x, u, \mathbf{W}_{t+1}, \boldsymbol{p}_{t}) + \bigvee_{t+1}^{\mu} \big(f_{t}(x, u, \mathbf{W}_{t+1}), \boldsymbol{p} \big) \Big] \\ & \forall (x, \boldsymbol{p}) \in \mathbb{R}^{n_{x}} \times \mathbb{R}^{n_{p} \times (T+1)} , \ \forall t \in \{0, \dots, T-1\} \end{split}$$

Proposition (Le Franc [2021]) Under the discrete white noise assumption, the convex multistage problem assumption, and the parameter set assumption, the lower smooth parametric value functions $\{V_t^{\mu}\}_{t \in \{0,...,T\}}$ are differentiable w.r.t. p, and their gradients may be computed by backward induction

$$\Phi^* = \inf_{\boldsymbol{p} \in \mathcal{P}} \Phi(\boldsymbol{p})$$

Proposition (Le Franc [2021])

Under the same assumptions, if the sequence of regularization parameters $\{\mu_n\}_{n\in\mathbb{N}} \in (\mathbb{R}^*_+)^{\mathbb{N}}$ is nonincreasing and such that $\lim_{n\to+\infty} \mu_n = 0$, then for any initial state $x_0 \in \mathbb{R}^{n_x}$, we have that

$$\inf_{p\in\mathcal{P}} \bigvee_{0}^{\mu_n}(x_0,p) \leq \Phi^* \ , \ \forall n\in\mathbb{N} \ , \ \text{ and } \ \inf_{p\in\mathcal{P}} \bigvee_{0}^{\mu_n}(x_0,p) \xrightarrow[n\to+\infty]{} \Phi^*$$

2. Parametric multistage stochastic optimization for day-ahead power scheduling

Parametric multistage stochastic optimization

Differentiability of smooth parametric value functions

Lower smooth approximations

Lower polyhedral approximations

Numerical application

State extension

$$x_t^{\sharp} = \begin{pmatrix} x_t \\ p \end{pmatrix} \in \mathbb{R}^{n_x} \times \mathbb{R}^{n_p \times (T+1)}, \ \forall t \in \{0, \dots, T\}$$

$$\Phi(\mathbf{p}) = \inf_{\mathbf{U}_{0},...,\mathbf{U}_{T-1}} \mathbb{E}\left[\sum_{t=0}^{T-1} L_{t}^{\sharp}(\mathbf{X}_{t}^{\sharp},\mathbf{U}_{t},\mathbf{W}_{t+1}) + \mathcal{K}^{\sharp}(\mathbf{X}_{T}^{\sharp})\right]$$
$$\mathbf{X}_{0}^{\sharp} = \begin{pmatrix} x_{0} \\ \mathbf{p} \end{pmatrix}$$
$$\mathbf{X}_{t+1}^{\sharp} = f_{t}^{\sharp}(\mathbf{X}_{t}^{\sharp},\mathbf{U}_{t},\mathbf{W}_{t+1}), \quad \forall t \in \{0,\ldots,T-1\}$$
$$\mathbf{U}_{t} \in \mathcal{U}_{t}^{\sharp}(\mathbf{X}_{t}^{\sharp}), \quad \forall t \in \{0,\ldots,T-1\}$$
$$\sigma(\mathbf{U}_{t}) \subseteq \sigma(\mathbf{W}_{1},\ldots,\mathbf{W}_{t}), \quad \forall t \in \{0,\ldots,T-1\}$$

Lower polyhedral value functions

• We introduce the state value functions

$$\begin{split} V_T^{\sharp}(x^{\sharp}) &= \mathcal{K}^{\sharp}(x^{\sharp}) , \ \forall x^{\sharp} \in \left(\mathbb{R}^{n_x} \times \mathbb{R}^{n_p \times (T+1)}\right) \\ V_t^{\sharp}(x^{\sharp}) &= \inf_{u \in \mathcal{U}_t^{\sharp}(x^{\sharp})} \mathbb{E}\Big[L_t^{\sharp}(x^{\sharp}, u, \mathbf{W}_{t+1}) + V_{t+1}^{\sharp} \big(f_t^{\sharp}(x^{\sharp}, u, \mathbf{W}_{t+1}) \big) \Big] \\ \forall x^{\sharp} \in \left(\mathbb{R}^{n_x} \times \mathbb{R}^{n_p \times (T+1)}\right) , \ \forall t \in \{0, \dots, T-1\} \end{split}$$

- We compute polyhedral lower approximations {<u>V</u>^k_t}_{t∈{0,...,T}} of {V[♯]_t}_{t∈{0,...,T} by running k ∈ N forward-backward passes of the SDDP algorithm
- Since <u>V</u>^k₀ is polyhedral, linear programming gives us a subgradient (y, q) ∈ ∂<u>V</u>^k₀((x₀, p))

Proposition (Le Franc [2021])

Let $(x_0, p) \in \mathbb{R}^{n_x} \times \mathbb{R}^{n_p \times (T+1)}$. If after $k \in \mathbb{N}^*$ forward-backward passes of the SDDP algorithm the approximation error of the value function V_0^{\sharp} by the lower polyhedral approximation \underline{V}_0^k is bounded by

 $V_0^{\sharp}((x_0,p)) - \underline{V}_0^k((x_0,p)) \leq \varepsilon$

for some $\varepsilon \in \mathbb{R}_+$, then if we compute

 $\begin{cases} \phi = \underline{V}_0^k((x_0, p)) \\ (y, q) \in \partial \underline{V}_0^k((x_0, p)) \end{cases} \text{ we have that } \begin{cases} |\Phi(p) - \phi| \leq \varepsilon \\ q \in \partial_{\varepsilon} \Phi(p) \end{cases}$

2. Parametric multistage stochastic optimization for day-ahead power scheduling

Parametric multistage stochastic optimization

Differentiability of smooth parametric value functions

Lower smooth approximations

Lower polyhedral approximations

Numerical application

Back to our problem

The delivered power \tilde{p} induces gains and differences between p and \tilde{p} induce penalties

46

Schematic organization of the solar plant

- $g \in [0, \bar{p}]^T$ generated power (uncertainty)
- $v^{c} \in [0,g]^{T}$ curtailed power (control)
- $s \in [0, \overline{s}]^{\mathcal{T}+1}$ state of charge (state)
- $v^{\mathsf{b}} \in [\underline{v}, \overline{v}]^{\mathcal{T}}$ battery power (control)
- $\tilde{p} = g v_b v_c$ delivered power

Schematic organization of the solar plant

- $g \in [0, \bar{p}]^T$ generated power (uncertainty) $\rightarrow AR(1)$ process
- $v^{c} \in [0,g]^{T}$ curtailed power (control)
- $s \in [0, \overline{s}]^{\mathcal{T}+1}$ state of charge (state)
- $v^{\mathsf{b}} \in [\underline{v}, \overline{v}]^{\mathcal{T}}$ battery power (control)
- $\tilde{p} = g v_b v_c$ delivered power

Stochastic optimal control framework

• We introduce the the state, control and noise variables

$$x = \begin{pmatrix} s \\ g \end{pmatrix}$$
, $u = \begin{pmatrix} v^b \\ v^c \end{pmatrix}$, w

 $\bullet\,$ The state process ${\bf X}$ is ruled by the dynamics

$$\mathbf{X}_{t+1} = f_t(\mathbf{X}_t, \mathbf{U}_t, \mathbf{W}_{t+1}) = \begin{pmatrix} \mathbf{S}_t + \rho_c \mathbf{V}_t^{\mathbf{b}^+} - \frac{1}{\rho_d} \mathbf{V}_t^{\mathbf{b}^-} \\ \alpha_t \mathbf{G}_t + \beta_t + \mathbf{W}_{t+1} \end{pmatrix} = \begin{pmatrix} \mathbf{S}_{t+1} \\ \mathbf{G}_{t+1} \end{pmatrix}$$

• The stage costs formulate as

$$L_t(\mathbf{X}_t, \mathbf{U}_t, \mathbf{W}_{t+1}, \frac{\mathbf{p}_t}{\mathbf{p}_t}) = \underbrace{-c_t \widetilde{\mathbf{P}}_{t+1}}_{\text{delivery gain}} + \underbrace{\lambda c_t |\widetilde{\mathbf{P}}_{t+1} - \frac{\mathbf{p}_t}{\mathbf{p}_{\text{enalty}}}|}_{\text{penalty}}$$

Scenarios

We use one year of power data from Ausgrid to calibrate the weights (α_t, β_t) and the law of \mathbf{W}_{t+1} for the generated power \mathbf{G}_t

Methods to compute an optimal profile $p^* \in \mathbb{R}^7$

We want to compute $p^* \in \underset{p \in \mathcal{P}}{\arg \min \Phi(p)}$

 Generic method

 input: $p^0 \in \mathcal{P}$

 for $n = 1 \dots N$ do

 \blacktriangleright call a a first order oracle to estimate

 $\rightarrow \Phi(p^n)$
 $\rightarrow q^n$ as a (sub)gradient of Φ at p^n
 \blacktriangleright use an iterative update rule to compute

 p^{n+1} from (p^n, q^n, \mathcal{P}) and a step size $\alpha_n \in \mathbb{R}_+$

 end

 output: p^*

We define a method as a first order oracle + an iterative algorithm

Instances of methods

We have three methods

• μ **SDP+IPM:** $\begin{cases}
\text{Lower smooth oracle} & \text{the discretization} \\
\text{Interior Points Method} & \rightarrow & \text{of } \mathbb{R}^{n_x}, \mathbb{R}^{n_u}
\end{cases}$ • k**SDDP+PSM:** $\begin{cases}
Lower polyhedral oracle \\
Projected Subgradient Method
\end{cases} \rightarrow of <math>k \in \mathbb{N}$ is critical the value • μ SDP+PGD: $\begin{cases}
Lower smooth oracle \\
Projected Gradient Descent
\end{cases}$ \rightarrow μ SDP+IPM

for **each method**, we try **several instances** i.e. several discretizations of \mathbb{R}^{n_x} , \mathbb{R}^{n_u} or several values of k

Evaluate a profile $p^* \in \mathbb{R}^{T}$

Given a profile $p^* \in \mathbb{R}^T$, we run the SDDP algorithm to compute

$$\begin{split} \underline{V}_{\mathcal{T}}(x) &= \mathcal{K}(x) , \ \forall x \in \mathbb{R}^2 \\ \underline{V}_t(x) &= \inf_{u \in \mathcal{U}_t(x)} \mathbb{E} \Big[L_t(x, u, \mathbf{W}_{t+1}, \mathbf{p}_t^*) + \underline{V}_{t+1} \big(f_t(x, u, \mathbf{W}_{t+1}) \big) \Big] \\ &\forall x \in \mathbb{R}^2 , \ \forall t \in \{0, \dots, \mathcal{T} - 1\} \end{split}$$

Then, we obtain a policy $\{\underline{\pi}_t\}_{t \in \{0,...,T-1\}}$ from $\{\underline{V}_t\}_{t \in \{0,...,T-1\}}$ and estimate the expected cost by sampling 25.000 scenarios

$$\overline{V}_{0}(x_{0}) = \mathbb{E}\Big[\sum_{t=0}^{T-1} L_{t}\big(\mathbf{X}_{t}, \underline{\pi}_{t}(\mathbf{X}_{t}), \mathbf{W}_{t+1}, \mathbf{p}_{t}^{*}\big) + K(\mathbf{X}_{T})\Big]$$

We deduce

$$\underbrace{\underline{V}_0(x_0)}_{\text{exact}} \triangleq \Phi(p^*) \underbrace{\leq \overline{V}_0(x_0)}_{\text{statistical}}$$

Results: cost vs overall computing time

1. EMSx: a numerical benchmark for energy management systems

2. Parametric multistage stochastic optimization for day-ahead power scheduling

3. Perspectives for numerical methods in generalized convexity

Fenchel conjugate, subdifferential, and polyhedral approximate of a convex lower semicontinuous function

Beyond convex lower semicontinuous functions...

$$\ell_{0}(u) \geq \max_{\substack{v_{i} \in \partial_{\dot{C}}\ell_{0}(u_{i})\\i \in I}} \left(\dot{c}(u, v_{i}) + \left(-\ell_{0}^{\dot{C}}(v_{i}) \right) \right)$$

• Question

Can we leverage **generalized convexity** notions to solve **nonconvex optimization problems**?

• Our contribution

We focus on **one-sided linear conjugacies** to extend the **mirror descent algorithm** and study its aplicability in **sparse optimization** 3. Perspectives for numerical methods in generalized convexity Background in one-sided linear (OSL) conjugacies The mirror descent algorithm The Capra coupling and the l₀ pseudonorm Perspectives for sparse optimization

$$\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\} \quad \text{and} \quad (+\infty) + (-\infty) = (-\infty) + (+\infty) = -\infty$$

Definition

Two sets \mathbb{U} ("Primal") and \mathbb{V} ("Dual") paired by a **coupling function** $c : \mathbb{U} \times \mathbb{V} \to \overline{\mathbb{R}}$ give rise to the *c*-Fenchel-Moreau conjugacy $f \in \overline{\mathbb{R}}^{\mathbb{U}} \mapsto f^c \in \overline{\mathbb{R}}^{\mathbb{V}}$

$$f^{c}(v) = \sup_{u \in \mathbb{U}} \left(c(u, v) + (-f(u)) \right), \quad \forall v \in \mathbb{V}$$

Example: two vector spaces \mathbb{U} and \mathbb{V} paired with a bilinear form $\langle \cdot, \cdot \rangle$ give rise to the classic Fenchel conjugacy $f \in \overline{\mathbb{R}}^{\mathbb{U}} \mapsto f^* \in \overline{\mathbb{R}}^{\mathbb{V}}$

Generalized *c*-biconjugate and *c*-convexity

• We also introduce the *c*'-Fenchel-Moreau conjugacy

$$g\in \overline{\mathbb{R}}^{\mathbb{V}}\mapsto g^{c'}\in \overline{\mathbb{R}}^{\mathbb{U}}\;,\;\;g^{c'}(u)=\sup_{v\in \mathbb{V}}\left(\underbrace{c(u,v)}_{=c'(v,u)}+(-g(v))
ight)\;,\;\;\forall u\in \mathbb{U}$$

• This gives rise to the *c*-Fenchel-Moreau biconjugate

$$f \in \overline{\mathbb{R}}^{\mathbb{U}} \mapsto f^{cc'} \in \overline{\mathbb{R}}^{\mathbb{U}} , \ f^{cc'}(u) = \left(f^{c}\right)^{c'}(u) , \ \forall u \in \mathbb{U}$$

Definition

A function $f \in \overline{\mathbb{R}}^{\mathbb{U}}$ is *c*-convex if $f = f^{cc'}$, that is

$$f(u) = \sup_{v \in \mathbb{V}} \left(c(u, v) + (-f^c(v)) \right), \quad \forall u \in \mathbb{U}$$

Example: a proper function $f \in \overline{\mathbb{R}}^{\mathbb{U}}$ is \langle , \rangle -convex iff f is convex and lsc

Definition

The *c*-subdifferential of a function $f \in \mathbb{R}^{\mathbb{U}}$ at $u \in \mathbb{U}$ with respect to the coupling *c* is the subset $\partial_c f(u) \subseteq \mathbb{V}$ defined equivalently either by

$$v \in \partial_c f(u) \iff f^c(v) = c(u,v) + (-f(u))$$

or by

 $v \in \partial_c f(u) \iff c(u,v) + (-f(u)) \ge c(u',v) + (-f(u')), \ \forall u' \in \mathbb{U}$

One-sided linear (OSL) couplings

- Let $\mathbb U$ and $\mathbb V$ be two vector spaces paired by a bilinear form $\langle\cdot\,,\cdot\rangle$
- We suppose given a mapping $\theta : \mathbb{W} \to \mathbb{U}$ where \mathbb{W} is any set

Definition

We define the one-sided linear coupling (OSL)

 $\mathbb{W} \stackrel{\star_{\theta}}{\longleftrightarrow} \mathbb{V}$

between $\mathbb W$ and $\mathbb V$ by

$$\star_{\theta}(w,v) = \langle \theta(w) \, , v \rangle \, , \ \forall w \in \mathbb{W} \, , \ \forall v \in \mathbb{V}$$

Some properties of convex analysis can be extended to $\star_\theta\text{-convex}$ functions...

3. Perspectives for numerical methods in generalized convexity

Background in one-sided linear (OSL) conjugacies

The mirror descent algorithm

The Capra coupling and the ℓ_0 pseudonorm

Perspectives for sparse optimization

The standard Bregman divergence

Definition

Let \mathbb{W} and \mathbb{V} be two vector spaces paired by a bilinear form $\langle \cdot, \cdot \rangle$ let $\kappa \in \mathbb{R}^{\mathbb{W}}$ be a proper, closed, convex and differentiable (divergence generating) function.

We define the Bregman divergence associated with κ by

$$egin{aligned} & \mathcal{D}_\kappa(w,w') = \kappa(w) - \kappa(w') - \langle w - w' \ ,
abla \kappa(w')
angle \ , \ & orall (w,w') \in \mathbb{W} imes \mathrm{dom}(
abla \kappa) \end{aligned}$$

 D_{κ} is not a distance, but if κ is strongly convex

- $D_{\kappa}(w, w') \geq 0$, $\forall (w, w') \in \mathbb{W} \times \operatorname{dom}(\nabla \kappa)$
- $D_{\kappa}(w,w')=0\iff w=w'$
- We have a "triangular inequality" that makes mirror descent work

The Bregman divergence with couplings

Definition

Let \mathbb{W} and \mathbb{V} be two sets and a **finite coupling** $\mathbb{W} \stackrel{c}{\longleftrightarrow} \mathbb{V}$ let $\kappa \in \mathbb{R}^{\mathbb{W}}$ be a proper *c*-convex (divergence generating) function. We define the *c*-**Bregman divergence associated with** κ by

$$egin{split} \mathcal{D}^{m{c}}_\kappa(w,w',v') &= \kappa(w) - \kappa(w') - m{c}(w,v') + m{c}(w',v') \ , \ &orall (w,w') \in \mathbb{W} imes \mathrm{dom}(\partial_c\kappa) \ , \ &orall v' \in \partial_c\kappa(w') \end{split}$$

If moreover

- \mathbb{V} is a vector space
- The coupling c is **OSL**
- The function κ is *c*-strongly convex

We retrieve some properties of the original Bregman divergence

The mirror descent algorithm with OSL couplings

We consider the optimization problem

 $\min_{w\in W}f(w)$

• We initialize three sequences by

$$w_{0} \in W$$

$$v_{0} \in \partial_{\star_{\theta}} (\kappa + \delta_{W})(w_{0})$$

$$v_{0}^{f} \in \partial_{\star_{\theta}} f(w_{0})$$

 We run N ∈ N steps with a step size α_n > 0 and the update rules

$$w_{n+1} \in \underset{w \in W}{\arg\min} \left(\kappa(w) + \left\langle \theta(w), \alpha_n v_n^f - v_n \right\rangle \right)$$
$$v_{n+1} = v_n - \alpha_n v_n^f$$
$$v_{n+1}^f \in \partial_{\star_\theta} f(w_{n+1})$$

Theorem (Le Franc [2021])

Under a suitable choice of divergence generating function κ we can bound the optimality gap by

$$\min_{0 \le n \le N-1} \left(f(w_n) - \inf_{w \in W} f(w) \right) \le \frac{R^2 + \frac{G^2}{4} \sum_{n=0}^{N-1} \alpha_n^2}{\sum_{n=0}^{N-1} \alpha_n}$$

- R and G are constant values determined by the problem and by κ
- We retrieve the same convergence rule as in the standard mirror descent algorithm

3. Perspectives for numerical methods in generalized convexity

Background in one-sided linear (OSL) conjugacies

The mirror descent algorithm

The Capra coupling and the ℓ_0 pseudonorm

Perspectives for sparse optimization

We introduce the Capra coupling

Definition (Chancelier and De Lara [2020])

Let $\|\|\cdot\|\|$ be a norm on \mathbb{R}^d called the **source norm** we define the **Capra** coupling $\mathbb{R}^d \xleftarrow{\diamond} \mathbb{R}^d$ by

$$\forall v \in \mathbb{R}^d , \ \varphi(u, v) = \begin{cases} \frac{\langle u, v \rangle}{\|\|u\|\|} & \text{if } u \neq 0 \\ 0 & \text{if } u = 0 \end{cases}$$

The coupling Capra is

- Constant Along Primal RAys (Capra)
- **OSL** with $c(u, v) = \langle n(u), v \rangle$, $\forall (u, v) \in (\mathbb{R}^d)^2$

where
$$n(u) = \begin{cases} \frac{u}{\|\|u\|\|} & \text{if } u \neq 0\\ 0 & \text{if } u = 0 \end{cases}$$

$$\ell_0(u) = \left| \left\{ j \in \{1, \dots, d\} \mid u_j \neq 0 \right\} \right|, \ \forall u \in \mathbb{R}^d$$

Proposition (Chancelier and De Lara [2021]) If both the source norm $\|\cdot\|$ and the dual norm $\|\cdot\|_*$ are **orthant-strictly monotonic**, we have that

$$\begin{split} \ell_0 &= \ell_0^{\dot{\varsigma}\dot{\varsigma}'} \\ \partial_{\dot{\varsigma}}\ell_0(u) \neq \emptyset \;, \; \forall u \in \mathbb{R}^d \end{split}$$

that is, the pseudonorm ℓ_0 is **Capra-convex** and **Capra-subdifferentiable** everywhere on \mathbb{R}^d

Examples:
$$\begin{cases} ||(0,1)||_{\infty} = ||(1,1)||_{\infty} = 1 \text{ hence } \ell_{\infty} \text{ is not OSM} \\ \ell_{2} \text{ is OSM} \end{cases}$$

Proposition (Le Franc [2021]) For the source norms $\|\|\cdot\|\| = \ell_p$, $p \in]1, \infty[$, we have that $\partial_{\dot{C}}\ell_0(0) = \mathbb{B}_{\ell_\infty}$ and if $u \neq 0$, $l = \ell_0(u)$, L = supp(u), for $v \in \mathbb{R}^d$, $|v_{\nu(1)}| \ge \ldots \ge |v_{\nu(d)}|$, $||v||_{(k,q)}^{\mathrm{tn}} = (|v_{\nu(1)}|^q + \ldots + |v_{\nu(k)}^q|)^{\frac{1}{q}}$ and $\frac{1}{p} + \frac{1}{q} = 1$ $v \in \partial_{\dot{\varsigma}} \ell_0(u) \iff \begin{cases} v_L \in \mathcal{N}_{\mathbb{B}_{||\cdot||_p}}(\frac{u}{||u||_p}) \\ |v_j| \le \min_{i \in L} |v_i| \ , \ \forall j \notin L \\ |v_{\nu(k+1)}|^q \ge (||v||_{(k,q)}^{\operatorname{tn}} + 1)^q - (||v||_{(k,q)}^{\operatorname{tn}})^q \ , \ \forall k < l \\ |v_{\nu(l+1)}|^q \le (||v||_{(l,q)}^{\operatorname{tn}} + 1)^q - (||v||_{(l,q)}^{\operatorname{tn}})^q \end{cases}$
Examples of sets $\partial_{\dot{\mathbf{C}}}\ell_0(u)$ in \mathbb{R}^2 with the source norm $||| \cdot ||| = \ell_2$

 $\partial_{\dot{c}}\ell_0(0,0) , \ \partial_{\dot{c}}\ell_0(1,0) , \ \partial_{\dot{c}}\ell_0(u_1,u_2)$

Vizualisation of $\partial_{\dot{\mathbf{c}}}\ell_0$ in \mathbb{R}^2 with the source norm $||\!|\cdot|\!|\!| = \ell_2$

3. Perspectives for numerical methods in generalized convexity

Background in one-sided linear (OSL) conjugacies

The mirror descent algorithm

The Capra coupling and the ℓ_0 pseudonorm

Perspectives for sparse optimization

We consider problems of type

 $\min_{u\in U}\ell_0(u)$

and we look for constraint sets $U \subseteq \mathbb{U}$ for which we have a **Capra-convex (sparse) optimization problem**

Definition We say that **the set** $U \subseteq \mathbb{U}$ **is Capra-convex** if the indicator function δ_U is a Capra-convex function

Which sets are Capra-convex ?

Proposition (Le Franc [2021])

Let the source norm $||| \cdot ||| = || \cdot ||_p$, $p \in]1, \infty[$ and $U \subseteq \mathbb{U}$ be a nonempty set

 $U \text{ is Capra-convex } \iff \begin{cases} U \text{ is a cone} \\ U \cup \{0\} \text{ is closed} \\ U \cap \{0\} = \overline{\operatorname{co}}(n(U)) \cap \{0\} \end{cases}$

Example with $\|\cdot\| = \ell_2$: a non Capra-convex cone

Example with $\|\cdot\| = \ell_2$: a non Capra-convex cone

 $K \cap \{0\} \neq \overline{\operatorname{co}}(n(K)) \cap \{0\}$

Example with $\|\cdot\| = \ell_2$: a Capra-convex cone

Example with $\|\cdot\| = \ell_2$: a Capra-convex cone

 $K \cap \{0\} = \overline{\mathrm{co}}(n(K)) \cap \{0\}$

Application of the mirror descent algorithm

Turning to e.g.
$$\min_{u \in \mathbf{K}} \frac{||u||_1}{||u||_2}$$
?

- We need to identify suitable divergence generating functions κ such that $\kappa + \delta_{\kappa}$ is Capra-strongly convex
- We need to make sure that we can **compute efficiently**

$$u_{n+1} \in \operatorname*{arg\,min}_{u \in K} \left(\kappa(u) + c(u, \alpha_n v_n^f - v_n) \right)$$

Work in progress...

Conclusion

- 1. We have introduced a dataset, a mathematical framework and a software to compare microgrid controller techniques on a publicly available benchmark
 - The EMSx benchmark is further detailed in [Le Franc et al., 2021]
- 2. We have introduced a class of parametric multistage stochastic optimization problems to model day-ahead power scheduling
 - We have presented differentiability properties of parametric value functions and derived efficient optimization methods
- 3. We have extended the mirror descent algorithm to OSL couplings
 - We have explicited the Capra-subdifferential of ℓ_0
 - We have identified Capra-convex sets and Capra-convex sparse optimization problems

- We look forward to applications of our methods in parametric multistage stochastic optimization to several concrete use cases in energy markets
- We plan to study further applications of the mirror descent algorithm to solve **Capra-convex problems**

- Jean-Philippe Chancelier and Michel De Lara. Constant along primal rays conjugacies and the IO pseudonorm. *Optimization*, 0(0):1–32, 2020. URL https://doi.org/10.1080/02331934.2020.1822836.
- Jean-Philippe Chancelier and Michel De Lara. Capra-convexity, convex factorization and variational formulations for the ℓ_0 pseudonorm. Set-Valued and Variational Analysis, pages 1–23, 2021.
- Adrien Le Franc. Subdifferentiability in convex and stochastic optimization applied to renewable power systems. 2021.
- Adrien Le Franc, Pierre Carpentier, Jean-Philippe Chancelier, and Michel De Lara. Emsx: a numerical benchmark for energy management systems. *Energy Systems*, pages 1–27, 2021.

Appendix: an example where the subdifferential of the sum...

$$\|\cdot\| = \ell_2$$

 $\overline{u} \in \underset{K}{\arg\min} \ell_0 \implies 0 \in \partial_{\dot{\zeta}} (\ell_0 + \delta_K) (\overline{u}) \quad (\text{a property of OSL couplings})$

... is not the sum of the subdifferentials

 $0 \notin \partial_{\dot{\varsigma}} \ell_0(\bar{u}) + \partial_{\dot{\varsigma}} \delta_K(\bar{u}) \text{ hence } \partial_{\dot{\varsigma}} \ell_0(\bar{u}) + \partial_{\dot{\varsigma}} \delta_K(\bar{u}) \subsetneq \partial_{\dot{\varsigma}} (\ell_0 + \delta_K)(\bar{u})$