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A PV-battery microgrid
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Contribution of the section

• Question

How to evaluate an Energy Management System (EMS)
designed for operating a microgrid with

uncertain load and production
at least expected cost?

• Our contribution

We introduce EMSx, a microgrid controller benchmark
to compare (deterministic and stochastic) EMS techniques

on an open and diversified testbed
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Examples of daily scenarios from EMSx

Figure 1: Examples of daily
photovoltaic profiles

Figure 2: Examples of daily
load profiles

Over 1 year of historical observations and forecasts
collected by Schneider Electric on 70 industrial sites
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Stochasticity of the net demand across sites

Figure 3: RMSE of the net demand forecasts for each of the 70 sites
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Time scale and variables

We make decisions at time steps t ∈ {0, 1, . . . ,T}
over one week (∆t = 15 min , T = 672)

• xt ∈ [0, 1] state of charge of the battery

• ut ∈ [u, u] energy charged (ut ≥ 0)
or discharged (ut ≤ 0) over [t, t + 1]

• wt+1 = (gt+1, dt+1) generation and demand
historical data over [t, t + 1]

• ŵt,t+k = (ĝt,t+k , d̂t,t+k) , k ∈ {1, . . . , 96}
generation and demand historical forecast at time t

over [t + k − 1, t + k]
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Our microgrid management model

• state of charge ruled by the dynamics

xt+1 = f (xt , ut) = xt +
ρc

c
u+t −

1
ρdc

u−t

• controls restricted to the admissibility set

U(xt) = {ut ∈ R | u ≤ ut ≤ u and 0 ≤ f (xt , ut) ≤ 1}

• energy exchanges induce a cost

Lt(ut ,wt+1) = pbuy
t · (dt+1− gt+1 + ut)

+− psell
t · (dt+1− gt+1 + ut)

−
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Online information for decision making

• A partial chronicle is a sequence h = (h0, . . . , hT−1) of vectors
where for t ∈ {0, . . . ,T − 1}

ht =

(
wt ,wt−1, . . . ,wt−95

ŵt,t+1, . . . , ŵt,t+96

)
∈ H = R2×96 × R2×96

• A controller is a sequence φ = (φ0, . . . , φT−1) of mappings
where for t ∈ {0, . . . ,T − 1}

φt : [0, 1]×H→ R

(xt , ht) 7→ φt(xt , ht) ∈ U(xt)
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Management cost of a controller

For each site i ∈ I = {1, . . . , 70}

• A controller φi applied to a partial chronicle h ∈ HT

yields a management cost

J i (φi , h) =
T−1∑
t=0

Lit(ut ,wt+1)

x0 = 0

xt+1 = f i (xt , ut)

ut = φit(xt , ht)︸ ︷︷ ︸
nonanticipativity

• If we allow anticipative decisions
we obtain a lower bound for management costs J i (h) ≤ J i (φi , h)
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Gain of a controller φi on site i ∈ I

We have a pool of simulation chronicles S i ⊂ HT

• We measure gains w.r.t. a dummy controller φd = 0
(which does not use the battery)

G i (φi ) =
1
|S i |

∑
h∈S i

J i (φd, h)− J i (φi , h)

• We define the anticipative gain

G
i

=
1
|S i |

∑
h∈S i

J i (φd, h)− J i (h)

• We obtain an upper bound for gains G
i ≥ G i (φi )
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Normalized score of a control technique {φi}i∈I

• We define the normalized score of a control technique {φi}i∈I

G
({
φi
}
i∈I

)
=

1
|I |
∑
i∈I

G i (φi )

G
i

• A performing control technique gives

0 ≤︸︷︷︸
if better that φd

G
({
φi
}
i∈I

)
≤ 1︸︷︷︸
always

16



Outline of the section

1. EMSx: a numerical benchmark for energy management systems

The EMSx dataset

The EMSx mathematical framework: microgrid model

The EMSx mathematical framework: controller assessment

The EMSx software

Numerical examples of controllers

17



A Julia package: EMSx.jl

� �
1 struct Information
2 t::Int64
3 soc::Float64
4 pv::Array{Float64,1}
5 forecast_pv::Array{Float64,1}
6 load::Array{Float64,1}
7 forecast_load::Array{Float64,1}
8 price::Price
9 battery::Battery

10 site_id::String
11 end� �

The EMSx.jl built-in type Information gathers all the information
available to the controller to make a decision
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A Julia package: EMSx.jl

� �
1 using EMSx
2

3 mutable struct DummyController <: EMSx.AbstractController end
4

5 EMSx.compute_control(controller::DummyController,
6 information::EMSx.Information) = 0.
7

8 const controller = DummyController()
9

10 EMSx.simulate_sites(controller,
11 "home/xxx/path_to_save_folder",
12 "home/xxx/path_to_price",
13 "home/xxx/path_to_metadata",
14 "home/xxx/path_to_simulation_data")� �

Example of the implementation and simulation of a dummy controller
with the EMSx.jl package
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Standard controller design techniques

|
t

|
t + 1

|
t + 2

Look-ahead techniques:
MPC, OLFC

|
t

|
t + 1

|
t + 2

Vt+1

Cost-to-go techniques:
SDP, SDP-AR(k)
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Normalized score per design technique

Normalized score
Offline time
(seconds)

Online time
(seconds)

MPC 0.487 0.00 9.82 10−4

OLFC-10 0.506 0.00 1.14 10−2

OLFC-50 0.513 0.00 8.62 10−2

OLFC-100 0.510 0.00 1.87 10−1

SDP 0.691 2.67 3.09 10−4

SDP-AR(1) 0.794 38.1 4.44 10−4

SDP-AR(2) 0.795 468 5.55 10−4

Upper bound 1.0 - -
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Detailed gain over the 70 sites
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A typical power scheduling example

• We operate a solar plant over one day
with discrete time steps t ∈ {0, 1, . . . ,T}

0 T

• For every operating day

• In the day-ahead stage, we must supply
a power production profile p ∈ RT

• In the intraday stage, we manage the power plant
and deliver a power profile p̃ ∈ RT
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Engaged power vs delivered power

The delivered power p̃ induces gains
and differences between p and p̃ induce penalties
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Contribution of the section

• Question

How can we optimize day-ahead and intraday decisions
for operating a solar plant with uncertain generated power

at least expected cost?

• Our contribution

We introduce
parametric multistage stochastic optimization problems

for day-ahead power scheduling
and study differentiability properties

of parametric value functions
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Our standard formulation

We consider a multistage stochastic optimization problem
parametrized by p = (p0, . . . , pT ) ∈ Rnp×(T+1) formulated as

Φ(p) = inf
U0,...,UT−1

E
[T−1∑
t=0

Lt(Xt ,Ut ,Wt+1, pt) + K (XT , pT )
]

X0 = x0

Xt+1 = ft(Xt ,Ut ,Wt+1) , ∀t ∈ {0, . . . ,T − 1}
Ut ∈ Ut(Xt , pt) , ∀t ∈ {0, . . . ,T − 1}
σ(Ut) ⊆ σ(W1, . . . ,Wt) , ∀t ∈ {0, . . . ,T − 1}

where Xt : Ω→ Rnx , Ut : Ω→ Rnu , Wt : Ω→ Rnw
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Optimal solution via stochastic dynamic programming

Assumption (discrete white noise)
The sequence {Wt}t∈{1,...,T} is stagewise independent,
and each noise variable Wt has a finite support

For t ∈ {0, . . . ,T} and x ∈ Rnx

we define the parametric value functions

VT (x , p) = K (x , p)

Vt(x , p) = inf
u∈Ut(x,pt)

E
[
Lt(x , u,Wt+1, pt) + Vt+1

(
ft(x , u,Wt+1), p

)]

Under the (discrete) white noise assumption Φ(p) = V0(x0, p)
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Assumption

Assumption (convex multistage problem)

1. the cost functions {Lt}t∈{0,...,T−1} are jointly convex
and lsc w.r.t. (xt , ut , pt), and are proper,
and the final cost K is convex, proper, lsc

2. the dynamics {ft}t∈{0,...,T−1} are affine w.r.t. (xt , ut)

3. the set-valued mappings {Ut}t∈{0,...,T−1} are closed, convex,
have nonempty domains and compact ranges

4. the problem satisfies a relatively complete recourse-like
assumption
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Convexity of parametric value functions

Proposition
Under the discrete white noise assumption
and the convex multistage problem assumption,
the parametric value functions {Vt}t∈{0,...,T} are convex, proper, lsc
w.r.t. (x , p)
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Assumption

Assumption (smoothness)

1. the cost functions {Lt}t∈{0,...,T−1} and K

are differentiable w.r.t. pt

2. for all t ∈ {0, . . . ,T − 1}, the set-valued mapping Ut
takes the same set value for all pt ∈ Rnp ;
in that case, we use the notation Ut(x) instead of Ut(x , pt)
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Differentiable parametric value functions

Theorem (Le Franc [2021])
Under the discrete white noise assumption,
the convex multistage problem assumption,
and the smoothness assumption,
the value functions {Vt}t∈{0,...,T} are differentiable w.r.t. p,
and their gradients may be computed by backward induction, with

∇pVT (x , p) = ∇pK (x , pT ) , ∀(x , p) ∈ dom(VT )

and at stage t ∈ {0, . . . ,T − 1}, for (x , p) ∈ dom(Vt),
the solution set U∗t (x , pt) is nonempty, and for any u∗ ∈ U∗t (x , pt),

∇pVt(x , p) = E
[
∇pLt(x , u

∗,Wt+1, pt) +∇pVt+1
(
ft(x , u

∗,Wt+1), p
)]
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Assumption

We consider a parameter set P ⊆ Rnp×(T+1)

Assumption (parameter set)

1. the parameter set P is nonempty, convex and compact

2. for all t ∈ {0, . . . ,T − 1},
the domain of the set-valued mapping Ut
is such that dom(Ut) ⊆ Rnx × Pt

where Pt = projt(P) ⊆ Rnp , ∀t ∈ {0, . . . ,T}
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Moreau envelopes of cost functions

Given values (x , u,w) ∈ Rnx × Rnu × Rnw

and a regularization parameter µ ∈ R∗+, we introduce

Lµt (x , u,w , pt) = inf
p′t∈Rnp

(
Lt(x , u,w , p

′
t) + δgr(Ut)(x , u, p

′
t) + δPt (p

′
t)

+
1
2µ
||pt − p′t ||22

)
, ∀t ∈ {0, . . . ,T − 1} , ∀pt ∈ Rnp

Kµ(x , pT ) = inf
p′T∈R

np

(
K (x , p′T ) + δPT

(p′T ) +
1
2µ
||pT − p′T ||22

)
, ∀pT ∈ Rnp
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Lower smooth parametric value functions

∼V
µ
T (x , p) = Kµ(x , pT ) , ∀(x , p) ∈ Rnx × Rnp×(T+1)

∼V
µ
t (x , p) = inf

u∈range(Ut)
E
[
Lµt (x , u,Wt+1, pt) + ∼V

µ
t+1
(
ft(x , u,Wt+1), p

)]
∀(x , p) ∈ Rnx × Rnp×(T+1) , ∀t ∈ {0, . . . ,T − 1}

Proposition (Le Franc [2021])
Under the discrete white noise assumption,
the convex multistage problem assumption,
and the parameter set assumption,
the lower smooth parametric value functions

{
∼V
µ
t

}
t∈{0,...,T}

are differentiable w.r.t. p, and their gradients may be computed
by backward induction
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Convergence result

Φ∗ = inf
p∈P

Φ(p)

Proposition (Le Franc [2021])
Under the same assumptions, if the sequence of regularization
parameters {µn}n∈N ∈ (R∗+)N is nonincreasing and such that
limn→+∞ µn = 0, then for any initial state x0 ∈ Rnx , we have that

inf
p∈P ∼

V µn

0 (x0, p) ≤ Φ∗ , ∀n ∈ N , and inf
p∈P ∼

V µn

0 (x0, p) −−−−→
n→+∞

Φ∗
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State extension

x]t =

(
xt
p

)
∈ Rnx × Rnp×(T+1) , ∀t ∈ {0, . . . ,T}

Φ(p) = inf
U0,...,UT−1

E
[T−1∑
t=0

L]t(X
]
t ,Ut ,Wt+1) + K ](X]T )

]

X]0 =

(
x0

p

)
X]t+1 = f ]t (X]t ,Ut ,Wt+1) , ∀t ∈ {0, . . .T − 1}

Ut ∈ U ]t (X]t) , ∀t ∈ {0, . . . ,T − 1}
σ(Ut) ⊆ σ(W1, . . . ,Wt) , ∀t ∈ {0, . . . ,T − 1}
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Lower polyhedral value functions

• We introduce the state value functions

V ]
T (x]) = K ](x]) , ∀x] ∈

(
Rnx × Rnp×(T+1))

V ]
t (x]) = inf

u∈U]t (x])
E
[
L]t(x

], u,Wt+1) + V ]
t+1
(
f ]t (x], u,Wt+1)

)]
∀x] ∈

(
Rnx × Rnp×(T+1)) , ∀t ∈ {0, . . . ,T − 1}

• We compute polyhedral lower approximations {V k
t }t∈{0,...,T}

of {V ]
t }t∈{0,...,T} by running k ∈ N forward-backward passes

of the SDDP algorithm

• Since V k
0 is polyhedral, linear programming

gives us a subgradient (y , q) ∈ ∂V k
0
(
(x0, p)

)

43



Convergence result

Proposition (Le Franc [2021])

Let (x0, p) ∈ Rnx × Rnp×(T+1). If after k ∈ N∗ forward-backward passes
of the SDDP algorithm the approximation error of the value function
V ]

0 by the lower polyhedral approximation V k
0 is bounded by

V ]
0
(
(x0, p)

)
− V k

0
(
(x0, p)

)
≤ ε

for some ε ∈ R+, then if we compute{
φ = V k

0
(
(x0, p)

)
(y , q) ∈ ∂V k

0
(
(x0, p)

) we have that

{
|Φ(p)− φ| ≤ ε
q ∈ ∂εΦ(p)
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Back to our problem

The delivered power p̃ induces gains
and differences between p and p̃ induce penalties
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Schematic organization of the solar plant

s

−
+

g
v c

−+
p̃

vb

• g ∈ [0, p̄]T generated power (uncertainty)

• v c ∈ [0, g ]T curtailed power (control)

• s ∈ [0, s]T+1 state of charge (state)

• vb ∈ [v , v ]T battery power (control)

• p̃ = g − vb − vc delivered power
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Schematic organization of the solar plant

s

−
+

g
v c

−+
p̃

vb

• g ∈ [0, p̄]T generated power (uncertainty) → AR(1) process

• v c ∈ [0, g ]T curtailed power (control)

• s ∈ [0, s]T+1 state of charge (state)

• vb ∈ [v , v ]T battery power (control)

• p̃ = g − vb − vc delivered power
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Stochastic optimal control framework

• We introduce the the state, control and noise variables

x =

(
s

g

)
, u =

(
vb

v c

)
, w

• The state process X is ruled by the dynamics

Xt+1 = ft(Xt ,Ut ,Wt+1) =

(
St + ρcVb

t
+ − 1

ρd
Vb

t
−

αtGt + βt + Wt+1

)
=

(
St+1

Gt+1

)

• The stage costs formulate as

Lt(Xt ,Ut ,Wt+1, pt) = −ct~Pt+1︸ ︷︷ ︸
delivery gain

+λct |~Pt+1 − pt |︸ ︷︷ ︸
penalty
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Scenarios

We use one year of power data from Ausgrid
to calibrate the weights (αt , βt) and the law of Wt+1

for the generated power Gt
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Methods to compute an optimal profile p∗ ∈ RT

We want to compute p∗ ∈ argmin
p∈P

Φ(p)

Generic method
input: p0 ∈ P
for n = 1 . . .N do

I call a a first order oracle to estimate
→ Φ(pn)

→ qn as a (sub)gradient of Φ at pn

I use an iterative update rule to compute
pn+1 from (pn, qn,P) and a step size αn ∈ R+

end
output: p∗

We define a method as a first order oracle + an iterative algorithm
50



Instances of methods

We have three methods

• µSDP+IPM:

{
Lower smooth oracle

Interior Points Method
→

the discretization
of Rnx ,Rnu

is critical

• kSDDP+PSM:

{
Lower polyhedral oracle

Projected Subgradient Method
→

the value
of k ∈ N
is critical

• µSDP+PGD:

{
Lower smooth oracle

Projected Gradient Descent
→ same as

µSDP+IPM

for each method, we try several instances
i.e. several discretizations of Rnx ,Rnu or several values of k
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Evaluate a profile p∗ ∈ RT

Given a profile p∗ ∈ RT , we run the SDDP algorithm to compute

V T (x) = K (x) , ∀x ∈ R2

V t(x) = inf
u∈Ut(x)

E
[
Lt(x , u,Wt+1, p

∗
t ) + V t+1

(
ft(x , u,Wt+1)

)]
∀x ∈ R2 , ∀t ∈ {0, . . . ,T − 1}

Then, we obtain a policy {πt}t∈{0,...,T−1} from {V t}t∈{0,...,T−1}

and estimate the expected cost by sampling 25.000 scenarios

V 0(x0) = E
[T−1∑
t=0

Lt
(
Xt , πt(Xt),Wt+1, p

∗
t

)
+ K (XT )

]
We deduce

V 0(x0) ≤︸ ︷︷ ︸
exact

Φ(p∗) ≤ V 0(x0)︸ ︷︷ ︸
statistical
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Results: cost vs overall computing time
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Fenchel conjugate, subdifferential, and polyhedral approximate
of a convex lower semicontinuous function

u u

f (u) ≥ max
vi∈∂f (ui )

i∈I

(
〈u , vi 〉+

(
−f ?(vi )

))
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Beyond convex lower semicontinuous functions...

ℓ0 = 0

ℓ0 = 1

ℓ0 = 2

`0(u) ≥ max
vi∈∂¢`0(ui )

i∈I

(
¢(u, vi ) +

(
−`¢0 (vi )

))
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Contribution of the section

• Question

Can we leverage generalized convexity notions
to solve nonconvex optimization problems?

• Our contribution

We focus on one-sided linear conjugacies
to extend the mirror descent algorithm

and study its aplicability in sparse optimization
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Couplings and generalized Fenchel-Moreau conjugacies

R = R ∪ {−∞,+∞} and (+∞) ·+ (−∞) = (−∞) ·+ (+∞) = −∞

Definition
Two sets U (“Primal”) and V (“Dual”) paired by
a coupling function c : U× V→ R
give rise to the c-Fenchel-Moreau conjugacy

f ∈ RU 7→ f c ∈ RV

f c(v)= sup
u∈U

(
c(u, v) ·+

(
−f (u)

))
, ∀v ∈ V

Example: two vector spaces U and V paired with a bilinear form 〈· , ·〉
give rise to the classic Fenchel conjugacy f ∈ RU 7→ f ? ∈ RV
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Generalized c-biconjugate and c-convexity

• We also introduce the c ′-Fenchel-Moreau conjugacy

g ∈ RV 7→ g c′ ∈ RU
, g c′(u) = sup

v∈V

(
c(u, v)︸ ︷︷ ︸
=c′(v ,u)

·+
(
−g(v)

))
, ∀u ∈ U

• This gives rise to the c-Fenchel-Moreau biconjugate

f ∈ RU 7→ f cc
′
∈ RU

, f cc
′
(u) =

(
f c
)c′

(u) , ∀u ∈ U

Definition

A function f ∈ RU
is c-convex if f = f cc

′
, that is

f (u) = sup
v∈V

(
c(u, v) ·+

(
−f c(v)

))
, ∀u ∈ U

Example: a proper function f ∈ RU
is 〈 , 〉-convex iff f is convex and lsc
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Generalized c-subdifferential

Definition

The c-subdifferential of a function f ∈ RU
at u ∈ U

with respect to the coupling c is the subset ∂c f (u) ⊆ V
defined equivalently either by

v ∈ ∂c f (u) ⇐⇒ f c(v) = c(u, v) ·+
(
−f (u)

)
or by

v ∈ ∂c f (u) ⇐⇒ c(u, v) ·+
(
−f (u)

)
≥ c(u′, v) ·+

(
−f (u′)

)
, ∀u′ ∈ U
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One-sided linear (OSL) couplings

• Let U and V be two vector spaces paired by a bilinear form 〈· , ·〉
• We suppose given a mapping θ : W→ U where W is any set

Definition
We define the one-sided linear coupling (OSL)

W ?θ←→ V

between W and V by

?θ(w , v) = 〈θ(w) , v〉 , ∀w ∈W , ∀v ∈ V

Some properties of convex analysis can be extended
to ?θ-convex functions...
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The standard Bregman divergence

Definition
Let W and V be two vector spaces paired by a bilinear form 〈· , ·〉
let κ ∈ RW

be a proper, closed, convex and differentiable
(divergence generating) function.
We define the Bregman divergence associated with κ by

Dκ(w ,w ′) = κ(w)− κ(w ′)− 〈w − w ′ ,∇κ(w ′)〉 ,
∀(w ,w ′) ∈W× dom(∇κ)

Dκ is not a distance, but if κ is strongly convex

• Dκ(w ,w ′) ≥ 0 , ∀(w ,w ′) ∈W× dom(∇κ)

• Dκ(w ,w ′) = 0 ⇐⇒ w = w ′

• We have a “triangular inequality”
that makes mirror descent work
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The Bregman divergence with couplings

Definition

Let W and V be two sets and a finite coupling W c←→ V
let κ ∈ RW

be a proper c-convex (divergence generating) function.
We define the c-Bregman divergence associated with κ by

Dc
κ(w ,w ′, v ′) = κ(w)− κ(w ′)− c(w , v ′) + c(w ′, v ′) ,

∀(w ,w ′) ∈W× dom(∂cκ) , ∀v ′ ∈ ∂cκ(w ′)

If moreover

• V is a vector space

• The coupling c is OSL

• The function κ is c-strongly convex

We retrieve some properties of the original Bregman divergence
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The mirror descent algorithm with OSL couplings

We consider the optimization problem

min
w∈W

f (w)

• We initialize three sequences by

w0 ∈W

v0 ∈ ∂?θ
(
κ+ δW

)
(w0)

v f
0 ∈ ∂?θ f (w0)

• We run N ∈ N steps with a step size αn > 0
and the update rules

wn+1 ∈ argmin
w∈W

(
κ(w) +

〈
θ(w) , αnv

f
n − vn

〉)
vn+1 = vn − αnv

f
n

v f
n+1 ∈ ∂?θ f (wn+1)
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Convergence result

Theorem (Le Franc [2021])
Under a suitable choice of divergence generating function κ
we can bound the optimality gap by

min
0≤n≤N−1

(
f (wn)− inf

w∈W
f (w)

)
≤

R2 + G2

4

∑N−1
n=0 α

2
n∑N−1

n=0 αn

• R and G are constant values
determined by the problem and by κ

• We retrieve the same convergence rule
as in the standard mirror descent algorithm
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We introduce the Capra coupling

Definition (Chancelier and De Lara [2020])

Let |||·||| be a norm on Rd called the source norm

we define the Capra coupling Rd ¢←→ Rd by

∀v ∈ Rd , ¢(u, v) =


〈u ,v〉
|||u||| if u 6= 0

0 if u = 0

The coupling Capra is

• Constant Along Primal RAys (Capra)
• OSL with ¢(u, v) = 〈n(u) , v〉 , ∀(u, v) ∈ (Rd)2

where n(u) =

 u
|||u||| if u 6= 0

0 if u = 0
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The `0 pseudonorm

`0(u) =
∣∣{j ∈ {1, . . . , d} ∣∣ uj 6= 0

}∣∣ , ∀u ∈ Rd

Proposition (Chancelier and De Lara [2021])
If both the source norm |||·||| and the dual norm |||·|||?
are orthant-strictly monotonic, we have that

`0 = `
¢¢′
0

∂¢`0(u) 6= ∅ , ∀u ∈ Rd

that is, the pseudonorm `0 is Capra-convex
and Capra-subdifferentiable everywhere on Rd

Examples:

{
||(0, 1)||∞ = ||(1, 1)||∞ = 1 hence `∞ is not OSM

`2 is OSM
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Explicit formulations for the Capra-subdifferential of `0

Proposition (Le Franc [2021])
For the source norms |||·||| = `p, p ∈]1,∞[, we have that

∂¢`0(0) = B`∞

and if u 6= 0, l = `0(u), L = supp(u), for v ∈ Rd , |vν(1)| ≥ . . . ≥ |vν(d)|,
||v ||tn(k,q) = (|vν(1)|q + . . .+ |vq

ν(k)|)
1
q and 1

p + 1
q = 1

v ∈ ∂¢`0(u) ⇐⇒


vL ∈ NB||·||p ( u

||u||p )

|vj | ≤ mini∈L |vi | , ∀j /∈ L

|vν(k+1)|q ≥
(
||v ||tn(k,q) + 1

)q − (||v ||tn(k,q))q , ∀k < l

|vν(l+1)|q ≤
(
||v ||tn(l,q) + 1

)q − (||v ||tn(l,q))q
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Examples of sets ∂¢`0(u) in R2 with the source norm |||·||| = `2

u1

u2

∂¢`0(0, 0) , ∂¢`0(1, 0) , ∂¢`0(u1, u2)
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Vizualisation of ∂¢`0 in R2 with the source norm |||·||| = `2

u1

u2

∂¢`0(0)
⋃{ ⋃

`0(u)=1

∂¢`0(u)
}⋃{ ⋃

`0(u)=2

∂¢`0(u)
}
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Capra-convex sparse optimization problems

We consider problems of type

min
u∈U

`0(u)

and we look for constraint sets U ⊆ U for which
we have a Capra-convex (sparse) optimization problem

Definition
We say that the set U ⊆ U is Capra-convex if the indicator function
δU is a Capra-convex function

Which sets are Capra-convex ?
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Characterization of Capra-convex sets

Proposition (Le Franc [2021])

Let the source norm |||·||| = ||·||p, p ∈]1,∞[

and U ⊆ U be a nonempty set

U is Capra-convex ⇐⇒


U is a cone

U ∪ {0} is closed
U ∩ {0} = co

(
n(U)

)
∩ {0}
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Example with |||·||| = `2: a non Capra-convex cone

u1

u2

K

u1

u2

co(n(K))

K ∩ {0} 6= co
(
n(K )

)
∩ {0}
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Example with |||·||| = `2: a non Capra-convex cone

u1

u2

K

u1

u2

co(n(K))

K ∩ {0} 6= co
(
n(K )

)
∩ {0}
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Example with |||·||| = `2: a Capra-convex cone

u1

u2

K

u1

u2

co(n(K))

K ∩ {0} = co
(
n(K )

)
∩ {0}
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Example with |||·||| = `2: a Capra-convex cone

u1

u2

K

u1

u2

co(n(K))

K ∩ {0} = co
(
n(K )

)
∩ {0}
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Application of the mirror descent algorithm

Only a (trivial) unconstrained test so far: minu∈R2
||u||1
||u||2
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Perspectives to handle constraint sets

Turning to e.g. minu∈K
||u||1
||u||2 ?

• We need to identify suitable divergence generating functions κ
such that κ+ δK is Capra-strongly convex

• We need to make sure that we can compute efficiently

un+1 ∈ argmin
u∈K

(
κ(u) + ¢(u, αnv

f
n − vn)

)
Work in progress...
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Conclusion

1. • We have introduced a dataset, a mathematical framework
and a software to compare microgrid controller techniques
on a publicly available benchmark

• The EMSx benchmark is further detailed in [Le Franc et al., 2021]

2. • We have introduced a class of parametric multistage
stochastic optimization problems to model
day-ahead power scheduling

• We have presented differentiability properties
of parametric value functions
and derived efficient optimization methods

3. • We have extended the mirror descent algorithm to OSL couplings

• We have explicited the Capra-subdifferential of `0

• We have identified Capra-convex sets
and Capra-convex sparse optimization problems
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Perspectives

• We look forward to applications of our methods
in parametric multistage stochastic optimization
to several concrete use cases in energy markets

• We plan to study further applications
of the mirror descent algorithm
to solve Capra-convex problems
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Appendix: an example where the subdifferential
of the sum...

|||·||| = `2

u1

u2

ū = (1, 0)

ū ∈ argmin
K

`0 =⇒ 0 ∈ ∂¢
(
`0 + δK

)
(ū) (a property of OSL couplings)



...is not the sum of the subdifferentials

Let v ′ ∈ ∂¢`0(ū) and v ′′ ∈ ∂¢δK (ū)

∂¢`0(ū)

u1

u2

v ′
1 ≥ 1

∂¢δK (ū) = N
co
(
n(K)
)(ū)

u1

u2

v ′′
1 ≥ 0

0 /∈ ∂¢`0(ū) + ∂¢δK (ū) hence ∂¢`0(ū) + ∂¢δK (ū) ( ∂¢
(
`0 + δK

)
(ū)
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