EMSx: an Numerical Benchmark for Energy Management Systems

SMAI Mode, September 2020

Adrien Le Franc^{1,2}, Pierre Carpentier³, Jean-Philippe Chancelier¹, Michel De Lara¹

CERMICS ENPC¹, Efficacity², UMA ENSTA Paris³

École des Ponts ParisTech

• Question

How to evaluate an **Energy Management System** (EMS) for operating a microgrid at **least expected cost** ?

• Our contribution

We introduce EMSx, a **microgrid controller benchmark** to compare EMS techniques on an **open** and **diversified** testbed

- 1. The EMSx dataset
- 2. The EMSx mathematical framework
- 3. The EMSx software
- 4. Numerical examples
- 5. Conclusion

1. The EMSx dataset

- 2. The EMSx mathematical framework
- 3. The EMSx software
- 4. Numerical examples
- 5. Conclusion

Examples of daily scenarios from EMSx

Figure 1: Examples of daily photovoltaic profiles

(data collected by Schneider Electric on real industrial sites)

- Over 1 year of historical data for 70 industrial sites
- 15 minutes sampled historical observations
- 15 minutes actualized 24h ahead historical forecasts
- Publicly available

Our data reflect a large diversity of microgrids

Figure 3: RMSE of the net demand forecasts for each of the 70 sites

1. The EMSx dataset

2. The EMSx mathematical framework

- 3. The EMSx software
- 4. Numerical examples
- 5. Conclusion

2. The EMSx mathematical framework

Microgrid control simulation

What is a controller ?

Assessing a controller design technique

We manage a microgrid over time steps $t \in \{0, 1, \dots, T\}$, $\Delta_t = 15$ min

- $\mathbf{x_t} \in [0, 1]$ state of charge of the battery
- $u_t \in [\underline{u}, \overline{u}]$ energy charged $(u_t \ge 0)$ or discharged $(u_t \le 0)$ over [t, t+1]
- $w_{t+1} = (g_{t+1}, d_{t+1})$ generation and demand historical data over [t, t+1]
- $\hat{w}_{t,t+k} = (\hat{g}_{t,t+k}, \hat{d}_{t,t+k})$, $k \in \{1, \dots, 96\}$ generation and demand historical forecast at time tover [t + k - 1, t + k]

• state of charge ruled by the dynamics

$$x_{t+1} = f(x_t, u_t) = x_t + \frac{\rho_c}{c}u_t^+ - \frac{1}{\rho_d c}u_t^-$$

• controls restricted to the admissibility set

$$\mathcal{U}(x_t) = \{u_t \in \mathbb{R} \mid \underline{u} \le u_t \le \overline{u} \text{ and } 0 \le f(x_t, u_t) \le 1\}$$

• energy exchanges induce a **cost**

$$L_t(u_t, w_{t+1}) = p_t^{\mathsf{buy}} \cdot (d_{t+1} - g_{t+1} + u_t)^+ - p_t^{\mathsf{sell}} \cdot (d_{t+1} - g_{t+1} + u_t)^-$$

2. The EMSx mathematical framework

Microgrid control simulation

What is a controller ?

Assessing a controller design technique

- The online information contains
 - 24h of historical observation
 - 24h of historical forecasts
- At time $t \in \{0, \ldots, T-1\}$, we have access to

$$h_t = \begin{pmatrix} w_t, w_{t-1}, \dots, w_{t-95} \\ \hat{w}_{t,t+1}, \dots, \hat{w}_{t,t+96} \end{pmatrix} \in \mathbb{H} = \mathbb{R}^{2 \times 96} \times \mathbb{R}^{2 \times 96}$$

 The sequence {0,..., *T* − 1} is characterized by the partial chronicle

$$h = (h_0, \ldots, h_{T-1}) \in \mathbb{H}^T$$

A controller is a sequence of mappings $\phi = (\phi_0, \dots, \phi_{T-1})$ such that

$$egin{aligned} \phi_t &: [0,1] imes \mathbb{H} o \mathbb{R} \ & (x_t,h_t) \mapsto \phi_t(x_t,h_t) \in \mathcal{U}(x_t) \end{aligned}, \ orall t \in \{0,\ldots,T-1\} \end{aligned}$$

• decisions are **non anticipative**

• this generic definition covers a large class of controllers

2. The EMSx mathematical framework

Microgrid control simulation

What is a controller ?

Assessing a controller design technique

For a site *i* in the total pool of sites $I = \{1, ..., 70\}$, the application of a controller ϕ^i along a partial chronicle $h \in \mathbb{H}^T$ yields a **management cost**

$$J^{i}(\phi^{i}, h) = \sum_{t=0}^{T-1} L^{i}_{t}(u_{t}, w_{t+1})$$
$$x_{0} = 0$$
$$x_{t+1} = f^{i}(x_{t}, u_{t})$$
$$u_{t} = \phi^{i}_{t}(x_{t}, h_{t})$$

We compare the management cost of a controller ϕ^i with

- the cost of a **dummy controller** $\phi^{d} = 0$ which does not use the battery
- the anticipative cost <u>J</u>ⁱ(h) ≤ Jⁱ(φⁱ, h) obtained by managing the microgrid with an idealistic full knowledge of the future

We have a pool of simulation chronicles \mathscr{S}^i

• We define the gain of ϕ^i as

$$G^{i}(\phi^{i}) = rac{1}{|\mathscr{S}^{i}|} \sum_{h \in \mathscr{S}^{i}} J^{i}(\phi^{\mathrm{d}},h) - J^{i}(\phi^{i},h)$$

• We define the anticipative gain as

$$\overline{G}^{i} = \frac{1}{|\mathscr{S}^{i}|} \sum_{h \in \mathscr{S}^{i}} J^{i}(\phi^{\mathrm{d}}, h) - \underline{J}^{i}(h)$$

Normalized score of a control technique $(\phi^i)_{i \in I}$

 We define the normalized gain of a controller φ_i as

$$\mathcal{G}^{i}(\phi^{i}) = rac{G^{i}(\phi^{i})}{\overline{G}^{i}} = rac{\text{average gain of }\phi^{i} \text{ vs }\phi^{d}}{\text{average anticipative gain vs }\phi^{d}}$$

 We define the normalized score of a control technique (φⁱ)_{i∈I} as

$$\mathcal{G}\left(\left\{\phi^{i}\right\}_{i\in I}\right) = \frac{1}{|I|}\sum_{i\in I}\mathcal{G}^{i}(\phi^{i})$$

1. The EMSx dataset

2. The EMSx mathematical framework

3. The EMSx software

- 4. Numerical examples
- 5. Conclusion

A Julia package: EMSx.jl

```
1
    using EMSx
2
    mutable struct DummyController <: EMSx.AbstractController end</pre>
3
4
    EMSx.compute_control(controller::DummyController,
5
         information::EMSx.Information) = 0.
6
7
8
    const controller = DummvController()
9
10
    EMSx.simulate_sites(controller,
         "home/xxx/path_to_save_folder",
11
         "home/xxx/path_to_price",
12
         "home/xxx/path_to_metadata",
13
         "home/xxx/path_to_simulation_data")
14
```

Figure 4: Example of the implementation and simulation of a dummy controller with the EMSx.jl package

- 1. The EMSx dataset
- 2. The EMSx mathematical framework
- 3. The EMSx software
- 4. Numerical examples
- 5. Conclusion

4. Numerical examples

Controller design techniques

Numerical results

At time $t \in \{0, \ldots, T-1\}$,

$$u_{t}^{\star} \in \arg\min_{u_{t}} \min_{(u_{t+1},...,u_{t+H-1})} \sum_{s=t}^{t+H-1} L_{s}(u_{s}, \hat{w}_{t,s+1})$$
$$x_{s+1} = f(x_{s}, u_{s}), \quad \forall s \in \{t, ..., t+H-1\}$$
$$u_{s} \in \mathcal{U}(x_{s}), \quad \forall s \in \{t, ..., t+H-1\}$$
$$\phi_{t}^{\mathsf{MPC}}(x_{t}, h_{t}) = u_{t}^{\star}$$

At time $t \in \{0, \ldots, T-1\}$,

$$u_t^{\star} \in \underset{u_t}{\arg\min} \min_{(u_{t+1}, \dots, u_{t+H-1})} \sum_{\sigma \in \mathbb{S}} \pi_t^{\sigma} \left(\sum_{s=t}^{t+H-1} L_s(u_s, \hat{w}_{t,s+1}^{\sigma}) \right)$$
$$x_{s+1} = f(x_s, u_s) , \quad \forall s \in \{t, \dots, t+H-1\}$$
$$u_s \in \mathcal{U}(x_s) , \quad \forall s \in \{t, \dots, t+H-1\}$$
$$\phi_t^{\mathsf{OLFC}}(x_t, h_t) = u_t^{\star}$$

Stochastic Dynamic Programming (SDP)

• We compute value functions offline

$$V_T(x) = 0$$

$$V_t(x) = \min_{u \in \mathcal{U}(x)} \sum_{\sigma \in \mathbb{S}^{\text{off},\sigma}} \pi_{t+1}^{\text{off},\sigma} \Big(L_t(u, w_{t+1}^{\text{off},\sigma}) + V_{t+1}(f(x, u)) \Big)$$

• We use value functions to compute online controls at time $t \in \{0, ..., T - 1\}$

$$\begin{cases} u_t^{\star} \in \arg\min_u \sum_{\sigma \in \mathbb{S}^{on}} \pi_{t+1}^{on,\sigma} \left(L_t(u, w_{t+1}^{on,\sigma}) + V_{t+1}(f(x, u)) \right) \\ \phi_t^{\text{SDP}}(x_t, h_t) = u_t^{\star} . \end{cases}$$

(If uncertainties W_1, \ldots, W_T are stagewise independent SDP gives an optimal solution)

• We model the net demand $z_t = d_t - g_t$ with an AR(k) process

$$\mathbf{Z}_{t+1} = \sum_{j=0,\ldots,k-1} \alpha_t^j \mathbf{Z}_{t-j} + \beta_t + \epsilon_{t+1} , \quad \forall t \in \{0,\ldots,T-1\}$$

We extend the state to x̃_t = (x_t, z_t, ..., z_{t-k+1}) ∈ [0, 1] × ℝ^k with a new dynamics

$$\widetilde{f}_t(\widetilde{x}_t, u_t, \epsilon_{t+1}) = \begin{pmatrix} f(x_t, u_t) \\ \sum_{j=0,\dots,k-1} \alpha_t^j z_{t-j} + \beta_t + \epsilon_{t+1} \\ z_t, \dots, z_{t-k+2} \end{pmatrix}$$

Similarly, we compute value functions \widetilde{V}_t offline and use them for computing online controls at time $t \in \{0, ..., T-1\}$

$$\begin{cases} u_t^{\star} \in \arg\min_u \sum_{\sigma \in \mathbb{S}^{\mathsf{on}}} \pi_{t+1}^{\mathsf{on},\sigma} \left(\widetilde{L}_t(\widetilde{x}_t, u, \epsilon_{t+1}^{\mathsf{on},\sigma}) + \widetilde{V}_{t+1}(\widetilde{f}_t(\widetilde{x}_t, u, \epsilon_{t+1}^{\mathsf{on},\sigma})) \right) \\ \phi_t^{\mathsf{SDP-AR}}(x_t, h_t) = u_t^{\star} . \end{cases}$$

(If uncertainties $\epsilon_1, \ldots, \epsilon_T$ are stagewise independent SDP-AR(k) gives an optimal solution)

4. Numerical examples

Controller design techniques

Numerical results

- We use EDF energy tariff
- For each site *i* ∈ {1,...,70}, we designed battery parameters (*cⁱ*, *ūⁱ*, *ρⁱ_c*, *ρⁱ_d*) with Schneider Electric
- We split the data into chronicles of 1 week
 - 60% of calibration (training) data
 - 40% of simulation (testing) data (giving a total of 2474 simulation chronicles)

	Normalized score	Offline time	Online time
		(seconds)	(seconds)
MPC	0.487	0.00	$9.82 \ 10^{-4}$
OLFC-10	0.506	0.00	$1.14 \ 10^{-2}$
OLFC-50	0.513	0.00	$8.62 \ 10^{-2}$
OLFC-100	0.510	0.00	$1.87 \ 10^{-1}$
SDP	0.691	2.67	$3.09 \ 10^{-4}$
SDP-AR(1)	0.794	38.1	$4.44 \ 10^{-4}$
SDP-AR(2)	0.795	468	$5.55 \ 10^{-4}$
Upper bound	1.0	-	-

Detailed gain over the 70 sites

Figure 5: Gain $G^{i}(\phi^{i})$ per sites $i \in I$ of controller design techniques MPC, OLFC-50, SDP and SDPAR(1), with anticipative gain \underline{G}^{i} (dashed line) and gain of a dummy controller (dashed and dotted line)

- 1. The EMSx dataset
- 2. The EMSx mathematical framework
- 3. The EMSx software
- 4. Numerical examples
- 5. Conclusion

- EMSx provides a **dataset**, a **mathematical framework** and a **software** to compare microgrid controller techniques
- All components of EMSx are **publicly available** ¹
- EMSx makes it easy to implement and evaluate a large class of microgrid control techniques
- Further details are available in our submitted paper ²

¹https://github.com/adrien-le-franc/EMSx.jl

²https://hal.archives-ouvertes.fr/hal-02425913/document